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Bifurcations in Globally Coupled Map Lattices 
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The dynamics of globally coupled map lattices can be described in terms of a 
nonlinear Frobenius-Perron equation in the limit of large system size. This 
approach allows for an analytical computation of stationary states and their 
stability. The bifurcation behavior of coupled tent maps near the chaotic band 
merging point is presented. Furthermore, the time-independent states of coupled 
logistic equations are analyzed. The bifurcation diagram of the uncoupled map 
carries over to the map lattice. The analytical results are supplemented with 
numerical simulations 
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1. INTRODUCTION 

Many physical nonequilibrium systems are governed by the mot ion of  many 
relevant degrees of  freedom. The most  prominent  example is hydrodynamic  
turbulence, but also optical, magnetic, chemical, and biological systems 
fall into this class (e.g., ref. 1 and references therein). F rom the theoretical 
point of  view it is often too difficult to solve the equations of  mot ion 
directly even on the largest accessible computers. Hence one is forced to 
investigate mathematical  model systems especially if one is interested in the 
pattern formation out  of  a r andom state. One class of such systems is given 
by coupled simple maps. c2~ Several phenomena arising in the context of  
hydrodynamics,  optics, and solid-state physics have been treated by such 
models, c3'4~ Although the actual relation between the basic equations of  
mot ion and the map lattice model is often not very well justified, the 
simplicity of  these models allows for a detailed numerical investigation. 
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Furthermore, rigorous approaches have been developed which usually 
require some hyperbolic properties of the model system. (5"6) Hence it 
may be possible to understand the basic mechanisms of pattern formation 
from a random state. But the general theory is just at the beginning. For 
that reason it is desirable to investigate the dynamics of simple spatially 
extended model systems beyond numerical simulations. 

Frequently, coupled map lattices with short-range interaction are 
investigated. This kind of interaction models the diffusive character of the 
spatially extended system. But it seems to be too difficult to investigate 
theoretically. A much simpler type is given by an all-to-all interaction. This 
coupling may be considered as a limiting case of a long-range interaction ~7) 
or as an approximation of a short-ranged coupled system in a (spatially) 
high-dimensional lattice. ~8) Furthermore, such a type of coupling has 
been used to model, e.g., the dynamics in multimode lasers, (9) Josephson 
junction arrays, (~~ or certain biological systems. ~ )  Its mean-field-like 
character greatly simplifies the theoretical approach. ~1z'~3) Hence I arrive at 
the model equation 

EN--I 
..,,r r , =(1-e)f(x~.~))+~ ~ f(x~. l')) 

"'u=O 
(1) 

Here f denotes the single-site map, which should admit a chaotic motion, 
e is the coupling constant, and N is the system size. The coupling is 
brought about by the mean field 

1N--I 
h .=~  Z f(x~ u)) (2) 

,u=0 

Although much more general types of globally coupled systems may be 
considered, I restrict the discussion to Eq. (1). The limit of large system 
size N >> 1 is of special interest because in that case the number of degrees 
of freedom which are relevant for the time evolution may become large. 
A surprising feature of global quantities such as the mean field (2) has been 
discovered recently. (14) The mean square deviation does not decrease with 
the system size, but saturates at a finite value. This phenomenon has been 
termed "violation of the law of large numbers" and has been attributed to 
some hidden coherence in the coupled map lattice. (la-2~ 

The limit of large system size causes some problems. On one hand, a 
direct numerical simulation of Eq. ( 1 ) needs increasing computer capacities. 
On the other hand, the occurrence of long transients considerably com- 
plicates the study of stationary statesJ 21'2~ For that reason an alternative 
approach is desirable. Because of the global coupling, the systems allows 



Bifurcations in Globally Coupled Map Lattices 431 

for a description in terms of a reduced density. "5'22"2~ Consider the 
probabil i ty that  a phase space coordinate  takes the value x. It reads 

1 
p . (x )  = ~  v=o - x .  ) (3) 

The mean  field can be expressed in terms of this density via 

h. = f f ( x )  p.(x) dx (4) 

For  the time evolution of the density (3) one obtains from Eq. (1) 

p.+ ](x) = f 6(x-- T.(y)) p,,(y) dy (5) 

where the mean-field m a p  7". is given by 

T. = V . o f  (6) 

F.(x) = (1 - e)x + eh. (7) 

Equations (4)-(7)  constitute a closed set of  exact nonlinear evolution equa- 
tions which is easier to handle than the original coupled map  lattice. The 
system size enters in this formulat ion only via the structure of  the density 
(3). F r o m  the physicist 's point  of  view it seems very natural  that  the density 
tends for typical phase space points to a "sufficiently cont inuous" function, z 
al though I do not have any mathemat ical  p roof  at the hand (cf. ref. 23 for 
related rigorous statements).  In this sense the limit of  large system size is 
contained in this mean-field description in a quite simple way. I restrict the 
analysis in the sequel to the discussion of Eq. (5) and continuous densities. 

Let me focus on the investigation of  s tat ionary states, which means 
fixed points and periodic orbits of  the mean-field equat ion and their 
stability. For  simplicity in the notat ion the explicit formulat ion will be 
given for fixed points only. The general considerations are easily extended 
to periodic orbits by investigating the fixed-point problem of a suitable 
iterate. The fixed points are determined by 

= f 6(x -- T , (y ) )  p , ( y )  dy (8) p. (x)  

2 By this I mean ttiat the corresponding measure p.(g) := J g(x) p.(x) dx, Yg, tends to a limit 
which has a nonatomic component. Although the formulation in terms of measures is 
physically less appealing, one should keep in mind that equations like Eq. (5) have to be 
understood in the weak sense,/l.+ j(g) =/~,,(g o T.), Vg, on a rigorous level. In particular, the 
formal derivative p'(x) has to be identified with the measure v.(g):= -S g'(x)p.(x)dx, u 
even if the derivative of the density is not defined. 
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where T,  denotes the mean-field map evaluated at the fixed point p , .  
Equation (8) constitutes a formidable mathematical problem which I do 
not intend to discuss rigorously. Less can be said about the structure of the 
solution without specifying the single-site map. However, some conclusions 
can be drawn about the stability if one presupposes the existence of a 
"sufficiently continuous" density. Consider a small deviation from the fixed- 
point density p , , (x )=p , (x )+~p , (x ) .  As long as linear stability analysis 
can be applied, these deviations obey [cf. Eq. (5)] 

6p,, + ,(x) = f 6(x -- T.(y)  ) 6p,,(y) dy - 6T. ~ p .(x) (9) 

,~T. = e f f ( x )  ,~p.(x) dx (1o) 

Stability is determined by the eigenvalue problem which corresponds to this 
linear evolution equation. Obviously this eigenvalue problem has the form 
of a perturbed Frobenius-Perron equation for the map T, .  The second 
term in Eq. (9) yields the formal perturbation. It is well known that the 
Frobenius-Perron equation has an eigenvalue one which is the largest in 
modulus. Because of a symmetry of the full evolution equation (5) and the 
normalization of the density this eigenvalue is persistent with respect to the 
perturbation. (2~ The corresponding eigenfunction may be understood as a 
kind of Goldstone mode. If the map T,  has certain hyperbolic properties, 
then the largest eigenvalue is isolated. Hence one needs a finite coupling 
strength in order that additional eigenvalues cross the unit circle. It is 
therefore expected that stationary states are stable in hyperbolic systems at 
least for small coupling strength. On the contrary, the spectrum of the 
Frobenius-Perron operator for nonhyperbolic maps is usually degenerate 
on the unit circle. (24"2~) Therefore an infinitesimal coupling may induce 
instability and a complicated dynamical behavior. 

On this level the considerations on stationary states and their stability 
are only qualitative. In Section 2 the stability analysis will be put on a 
more formal basis. The explicit computation of stationary states requires 
the knowledge of the single-site mapf.  In Section 3 the analysis will be 
presented for the "hyperbolic" tent map which includes the bifurcations 
that occur in this simple system. The problem of nonhyperbolic systems is 
analyzed in the context of the logistic equation. A partial bifurcation 
analysis and numerical simulations are presented in Section 4. Finally, 
I discuss the implications for the dynamics of the original coupled map 
lattice. 
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2. S T A B I L I T Y  OF S T A T I O N A R Y  S O L U T I O N S  

The stationary solutions depend on the special map lattice under 
consideration. But the stability can be discussed quite generally if the exist- 
ence of the fixed point is presupposed. Therefore the computation of the 
stationary states is postponed to subsequent sections. Here considerations 
concerning their stability are presented. 

I suppose that Eq. (8) has been solved for a continuous density p ,  
which should govern the stationary behavior of (Lebesgue) typical initial 
points. In the physical literature such a kind of distribution is usually 
termed the Sinai-Ruelle-Bowen (SRB) measure of the map T , .  The 
instability of such a distribution is indicated by an exponentially increasing 
solution of Eqs. (9) and (10). Its formal solution reads 3 

8p,,(x) = f 6(x -- T .(y))  6po(y) dy 

"-~ d f  
-- ~, 6T,_~ - -  6 ( x - T , ( y ) ) ( T , ) ' ( y ) p , ( y ) d y  (11) 

0"~0 - -~  d x  

6T,, = e f f (T ' , (y))  6po(Y) dy 

~  d 
+e ~ 6T._,_~.f  f (T~.(x))p . (x)dx  (12) 

~ 0  

For any continuous initial condition ~Po the first term of Eqs. (11) and (12) 
decays to zero because the SRB measure attracts any continuous distribu- 
tion. Therefore an exponential increase, which means instability, can be 
excluded if for all sufficiently smooth functions g and h the quantity 

j .  := f d g(T, (x)) ,  h(x) p,(x) dx (13) 

remains bounded if n tends to infinity. The subsequent considerations focus 
on the discussion of this quantity. 

The expression (13) has a close relation to the linear response of the 
map T~r (26'27) To clarify this point, consider for the moment the map T ,  
and denote its SRB density b y p , .  Let Xo=x+eh(x) be an ensemble of 
initial points where the values x are distributed according to the SRB 

T"~ x~.-~ 6T._~_./%((goT,)'). s In the weak sense the relation (11) reads 6p.(g)=J/lo(go , J - ~ = o  
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measure. The time evolution o f the  expectation value of a smooth observ- 
able g reads 

< g ) , =  < g ( T , [ x  + e h ( x ) ] ) )  , (14) 

where the brackets < . - - > ,  denote the SRB average. The quantity (14) 
tends toward the stationary value < g > ,  in the limit n ~ oo. Expansion in 
the small quantity e leads to 

<d > < g > , - - < g > , = e  --d-~xg(T',(x)).h(x) +O(e  2) (15) 

The right-hand side yields the formal linear relaxation function, which 
coincides with the expression (13). As long as the expansion in e is 
uniformly valid in n this quantity decays because the left-hand side does. 
But a linear response theory is in general not valid in the context of low- 
dimensional maps even for hyperbolic systems. Nevertheless any system 
which allows for the application of linear response theory leads to a 
bounded relaxation function (13) and therefore to stable stationary solu- 
tions in globally coupled maps. But this condition is too strong for general 
considerations. 

The estimation of the quantity (13) requires the knowledge of the 
density p . .  It can be computed for the class of piecewise linear Markov 
maps. This kind of system is characterized by maps of the interval I which 
are linear on a suitable partition Iv = [ av, av + ~ ], 0 ~< v ~< M, I = U v Iv, 
7v = T , ( x )  for x e Iv. Furthermore, it is required that the image of each 
interval is a union of other intervals T.(Iv)  = U'~ I~,. This property implies 
the expansiveness of the map. Although these systems seem to look rather 
special, many one-dimensional maps can be described in terms of such 
models by considering fine partitions Iv of the phase space L (28"25) It is well 
known that the dynamics of such systems is equivalent to a subshift of 
finite type and that the invariant density is a piecewise constant function, 
p . ( x )  = Pv for x e Iv. Integration by parts immediately yields for the relaxa- 
tion function (13) 

M - - I  

J,, = f g(T .(x)) h'(x) p.(x) ax + F. g(T'.(av)) h(av)(pv-pv_]) 
v = l  

(16) 

The relaxation function is obviously a bounded function. Whereas the first 
contribution decays to a constant, the second term is periodic for large n. 

The considerations of this section imply that the stationary states of 
the mean-field equation are stable if the mean-field map T ,  can be cast into 
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the form of a piecewise linear Markov map. At this level nothing can be said 
about nonhyperbolic systems like the frequently discussed logistic equation. 
In this case two different situations have to be considered. If the map T .  
possesses a stable periodic orbit, then the corresponding SRB density 
consists of a finite number of 6 peaks. But then the factors ( T , ) '  (x) in 
Eqs. (11) and (I2) decay exponentially and imply the stability of the 
solution at least if the initial disturbance 6P0 is contained in the basin 
of attraction of the periodic orbit. This result is obviously trivial. In the 
other case the SRB density develops square root singularities. 4 But these 
singularities induce an exponential increase of the relaxation function 
(13), (26) and turn the stationary solution unstable. This fact corresponds to 
the violation of linear response theory because of the structurally unstable 
character of the map. Hence one might expect that a small coupling e 
induces a nonstationary behavior in the map lattice. We will come back to 
this phenomenon in Section 4. 

3. S T A T I O N A R Y  STATES FOR C O U P L E D  TENT M A P S  

A very simple but nontrivial model system is given by coupled tent 
maps 

f ( x )  = 1 - a  Ixl (17) 

The isolated map has a chaotic motion for 1 < a ~< 2 and shows a cascade 
of chaotic band merging at parameter values a n = 2 I/2~ The mean-field map 
(6) which governs the dynamics of the globally coupled map lattice reads 

T , , ( x )  = 1 - e a (  Ixl >, - (1 - e) a Ixl (18) 

where the brackets ( . . . ) n  denote the average with respect to the density 
p, , (x) .  

For a dense set of parameter values a, e one can manage that the orbit 
of the extremal point x = 0 terminates at some unstable periodic orbit. The 
corresponding finite set of orbit points yields a Markov partition. The 
results of Section 2 imply that any smooth periodic solution of the mean- 
field equation is stable. Hence only the construction of these solutions from 
Eq. (8) is desired. 

For that purpose it is useful to make a linear time-dependent scale 
transformation x =  y,,z in the mean-field equation (5) in order that the 

4 This statement is rigorous if the orbit of the critical point has finite length. 
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mean-field map (18) takes the form of the uncoupled map (17). The evolu- 
tion equation for the scaled density 

/~.(z) = ]Y,,I p,,(y,,z) (19) 
reads 

~.+ 1(z) = f ~(z - 7".(z')) p(z') dz' (20) 

where the scaled mean-field map is given by 

T . ( z ) = l -  ( 1 - ~ ) a l ~ . l  Izl (21) 
1 - - c a  [Y,,[ < lz l> .  

if the scaling constants are determined by 

Y.+t = 1 - e a  I~~ Izl>. (22) 

In the sequel the brackets denote the average with respect to the scaled 
density (19). 

Fixed Points. 
and (22) yield 

For time-independent solutions /3,,=/~, Eqs. (21) 

y.  = I/(1 + ea< Izl > , )  > 0 (23) 

T,(z) = 1 - ( 1  - e )  a Izl (24) 

The actual shape of the fixed-point density p .  is determined by an equation 
analogous to Eq. (8). It coincides with the smooth invariant density of the 
tent map at a parameter value area := (1 - e ) a .  The global coupling has the 
effect of reducing the parameter in the tent map. 

Period-2 Solution, The single tent map (17) admits a period-two 
chaotic solution for 21/4 < a  < 2  ~/2. A corresponding period-two orbit/~*, 
p* may be expected in the mean-field dynamics (20), too. It is determined 
by the following set of coupled equations: 

~*(z) = f 6 ( z -  f"*(z')) ~*(z') dz' 

f ,  
= J ~ ( z -  (~*  o ~*)(z'))  p*(z') dz' (25) 

T*(z) = 1 area [~*__.......~[ [Z[, 1 ~ 2 (26) 

y * =  I - e a  [y' l< [ z l )* ,  1 ~--~2 (27) 

where ( . . .  > */2 denotes the average with respect to the densities P*/2. 
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;(e) 
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Fig. 1. Diagrammatic view of the two-times-iterated mean-field map (28) for 2v4< 
arc d < 2 I~. The diagonal, the dashed boxes, and the unstable fixed point ((c) are indicated for 
clarity. 

First I investigate the form of the general solution of Eq. (25). For  that  
purpose the ratio c :=  7~'/7" is considered as a free paramete r  which will be 
fixed later. The two-times-iterated mean-field m a p  which determines the 
shape of the density is given by 

( T *  o T*) (z )  = 1 - a r c  d le --are d Izl I (28) 

Here 7" > 0 has been assumed, which is justified a posterior. For  are d > x//2 
the m a p  admits  only one continuous invariant  density. It  corresponds to 
the fixed-point solution discovered above. Therefore I concentrate on the 
opposite case. For  2 TM <are  d < 21/2 and c e E1/ared, arid] the m a p  decom- 
poses into two different ergodic components  which are separated by the 
unstable fixed point  (cf. Fig. 1) 

a redC-  1 
((c) - (a----~d) ~ -  1 (29) 

The corresponding ergodic invariant densities are denoted by p(-)(z; e), 
Izl < C(c), respectively, p(+)(z; c), z > ~(e). It  is an elementary but  impor-  
tant  geometric  proper ty  of  the m a p  (28) that  the variat ion of the parameter  
e shifts the fixed point  if(e) but leaves the two components  of the map  
unchanged up to a linear scale t ransformation.  Hence the dependence of 
the densities on the paramete r  e can be written as 

~(c') (_) :~(c') ) p(->(z; c)=~-~p ~-C(~z; c'., Izl < C(c) (30) 

p(+)(z;c)=l-~(C')p(+)(l l - ~ ( c ' ) ( l _ z ) ; c , )  
1 - ~(c) 1 - ff(c--------ff , z > ( ( c ) ( 3 1 )  
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In addition the two densities are not independent of each other. The 
geometric properties of the map (26) imply that (Appendix A) 

f J(x-T*(y,)p'• I) (32, 

holds. The general solution of Eq. (25) is an arbitrary convex combination 
of both ergodic components 

fi*(z)=(1--et)pt-)(z;c)+o~pt+)(z;c), ~ e [ 0 ,  1] (33) 

But the parameter c is not at our disposal. It has to satisfy the addi- 
tional constraints (27). Because one has control of the c dependence of the 
solution via Eqs. (30) and (31) it will be shown that the relative weight 0c 
of the two ergodic components determines this ratio. To this end let me 
first mention that thanks to Eqs. (32) and (33) the relations 

< Izl > * = (1 - 0c)( Izl >~-) (c) + ~< Izl > + (c) (34) 

< Izl>*-- (1-0c)< Izl> (+) (I/c) +0~< Izl>- (l/c) (35) 

hold, where the abbreviations 

< Izl >(• Izl p(• c) dz (36) 

have been used. Then Eqs. (27) read 

l/y* = c + ea[(1 - ~)( Izl ) ( - )  (c) + 0c( Izl ) ~+) (c)] 

1/y* = 1/c + ea[(1 -0 t ) ( [z l )  ~+) (l/c) + 0~(Iz[) c-) (l/c)] 

which result in 

(37) 

(38) 

1 - c = e a [ ( 1  - c t ) ( (  Izl> ~-) ( c ) -  c< Izl> (+~ ( l / c ) )  

+ct((]z[) c+) (c) -- c( [z] ) c-) (l/c))] (39) 

Because of the scaling property (30) and (31 ), the dependence of the expec- 
tation values on the parameter c can be evaluated as 

< izl>(_), , ((c), -)(1)  (40) 

<]zl>(+)(c)= 1 1 - r  ] (41) 
1 - - ~ ( 1 )  
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Here c' has been set to unity for convenience. If one additionally uses the 
relation ( Izl )~ +) (1) = 1 - afed( Izl ) (-)  (1) between both expectation values 
(cf. Appendix A), one ends up with 

ca(are  a - 1 ) (  1 - 2 ~ ) r /  
c = 1 -~ (42) 

ar~ a - 1 + ea[  1 - arearl + ~ r / ( a r e  d - -  1 ) ]  

where the abbreviation q = 1 - [ 1 + are d ] ( [Z I > ( - ) ( 1 ) has been introduced. 
The right-hand side depends on ~ in a monotonic way (cf. Appendix A). 
Therefore for 0t values in a neighborhood of ~ = 1/2, Eq. (42) determines 
the unique c value in the allowed interval [ l / a r e d ,  area] which satisfies 
Eq. (27) by construction. Hence every density of the form (33) yields a 
period-two orbit of the mean-field equation (20). The fixed-point solution 
which also exists at the parameter values under consideration is contained 
in this continuous family for a particular value of the parameter 0c. 

Higher-Order Periodic Orbits. It is obvious that the computa- 
tions made above can be applied to any band merging in the tent map 
(e.g., consider the ergodic component p(-)).  Therefore at the critical 
parameter values ( 1 - e ) a = 2  ]/2" a continuum of period-2" orbits occurs. 
Every solution is stable. Depending on the initial condition, a particular 
state is attained in the course of the dynamics. 

4. ANALYSIS OF COUPLED LOGISTIC EQUATIONS 

The most popular system discussed in the literature is given by coupled 
logistic equations 

f ( x )  = 1 --  a x  2 (43) 

Although the dynamics of the uncoupled map is fairly well understood on 
a rigorous level, (29) it is surprisingly difficult to obtain related results for the 
mean-field coupled map lattice. The main problem originates from the non- 
hyperbolicity of the map, which causes the dense set of windows of stable 
periodic orbits in the uncoupled case. Because of the lack of suitable 
analytical approaches one is forced to resort to numerical solutions of 
Eq. (5). Nevertheless some statements on stationary states can be made. 

Stat ionary States. The mean-field map which governs the 
dynamics of Eq. (5) reads 

T . ( x )  = 1 - c a ( x 2 ) . -  (1 - e )  a x  2 (44) 

822/79/I-2.29 
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To analyze the stationary states it is again useful to introduce rescaled 
phase space variables so that Eq. (44) takes the form of the logistic 
equation. Choosing 

) ' .+ I = 1 - e a ~ , ] ( z 2 ) .  (45) 

the mean-field equation is cast into the form (19), (20) with 

aredY 2 
7"(z) = 1 1 - e a y ~ ( z 2 ) .  z2 (46) 

where the brackets ( . . . ) ,  denote the average with respect to the den- 
sity (19). Let me focus on the discussion of fixed points. Periodic orbits can 
be treated in principle by considering the iterated system. However, the 
discussion of the fixed-point problem seems to contain the main structure 
of the whole bifurcation diagram. The fixed-point density/~, is determined 
by an equation analogous to Eq. (8), where 

T,(z)  = 1 - a r e d ~ , Z  2 (47) 

denotes the mean-field map and the scaling parameter obeys 

~,, = 1 - ea?2, ( z 2 )  , (48) 

If one regards for the moment the quantity c :=ared)J, as a free parameter, 
then p ,  is the unique SRB measure of an ordinary logistic equation. 5 This 
density fixes the quantity ( z 2 ) ,  = ( z 2 ) ,  (c). If one now eliminates the 
scaling parameter ),, from Eq. (48) in favor of the abbreviation c one ends 
up with 

( 1 - e ) Z a = c + e c ( c ( z 2 ) , ( c ) - l ) .  c ~ [ 0 , 2 ]  (49) 

Equation (49) yields a family of curves in the parameter plane (a, e). 
On every curve the coupled map lattice admits a stationary solution. If the 
parameter c is chosen in such a way that its value corresponds to a periodic 
window in the logistic equation, then the density ~ ,  consists of a finite 
collection of 6 peaks. Due to the discussion at the end of Section 2 these 
states are dynamically stable. In the opposite case less can be said about 
the density ~ ,  and their stability. However, the remarks made in Section 2 
indicate that the solutions are dynamically unstable at least for situations 
which correspond to Smale complete logistic equations. 

5 Although every physicist believes that the logistic equation possesses an SRB measure, I am 
not aware of any proof that Eq. (43) possesses for every at[0,  2] a unique measure that 
describes the evolution of Lebesgue almost all initial points x. 
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Fig. 2. Distribution function of (x  2),, = ( 1 - h,,)/a for coupled logistic equations at a = 2 and 
several coupling strengths. The distributions have been obtained from a time series of 105 data 
points. They are displayed as histograms with 200 boxes on the abscissa. The sizes of the 
boxes are adapted to the width of the distribution. 

To sum it up, it can be said that Eq. (49) provides a foliation which 
translates the bifurcation structure of the logistic map to the parameter 
plane (a, e). States which correspond to periodic windows lead to dynami- 
cal stable fixed points. The fixed-point analysis presented here has much in 
common with the appraoch used in ref. 17. But in contrast to this approach 
Eq. (49) provides an explicit expression for the bifurcation lines and 
clarifies the stability of the solutions. Finally it should be mentioned that 
to my best knowledge it is not clear whether the parametrization (49) 
depends continuously on c. 6 Additionally it is not clear whether the lines 
can intersect so that coexisting stationary states occur. 

Numerical Simulations. The discussion in the preceding para- 
graph has s h o w n  tha t  the b i fu rca t ion  d i a g r a m  becomes  t r e m e n d o u s l y  c o m -  
p l ica ted  even  if only  the  fixed po in t s  are  cons idered .  A l t h o u g h  there  exist  

s table solu t ions ,  it is no t  c lear  whe the r  a typica l  ini t ial  c o n d i t i o n  sett les on  

these solut ions .  But  it is expec ted  tha t  an  inf ini tes imal  coup l ing  changes  the  

d y n a m i c a l  b e h a v i o r  in con t ras t  to the hype rbo l i c  examp le  t rea ted  in the  
p reced ing  sections.  

T o  shed s o m e  l ight  on  these p rob lems ,  the e v o l u t i o n  e q u a t i o n  (5) has  

been  i te ra ted  numer ica l ly .  The  numer i ca l  a l g o r i t h m  is briefly descr ibed  in 

6 Whether <z2). (c) depends continuously on c seems to be an unsolved problem. In fact 
both hypothesis can be found in the literature, cn7'22~ 
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Appendix  B. Ma in  interest  has been focused on the regime of  weak and 
modera te  coupl ing strength. The uniform dis t r ibut ion was chosen as a 
typical  init ial  density. I t  cor responds  to a r a n d o m  uniform dis t r ibut ion  
of  phase space coordina tes  for the original  coupled m a p  latt ice (1). The  
results described below seem not  to depend  on this choice. I f  the pa r ame te r  
a is restr icted to a large per iodic  window one finds in the weak coupl ing 
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Fig. 3. Power spectra of (x  2). for coupled logistic equations at a--2 and several coupling 
strengths. The spectra have been obtained from the Fourier transform of a time series of 
length 1024. An average over 200 different series has been performed. 
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regime stable periodic solutions of the same period. They correspond to the 
solutions which have been predicted by the analytical approach presented 
above. More interesting things happen if the parameter is chosen as a 
"typical" chaotic value. Several results for the choice a = 2 are presented 
here, but qualitatively similar results are obtained at all other values that 
have been investigated. 

Even for small coupling strength the system does not settle into a 
stationary state. The distribution of the mean field develops a complicated 
shape which shows an apparent nonsystematic variation with the coupling 
strength (cf. Fig. 2). The width of the distribution is finite and is responsible 
for the so-called "violation of the law of large numbers. ''<22'2~ The time 
evolution of the mean field is conveniently analyzed in terms of its power 
spectrum (cf. Fig. 3). For weak coupling strength the spectrum shows a 
small noise level on which sharp peaks are superimposed. By increasing the 
coupling strength the peaks broaden and the noise level increases. The 
actual shape of the spectrum seems to depend sensitively on the coupling 
strength. Because of the complicated structure of the partial bifurcation 
diagram described above it seems to be hopeless to attribute the peaks to 
definite periodic orbits. 

Finally, Fig. 4 contains the time evolution of the density Pn for 
two values of the coupling strength. In the case of weak coupling the 
density looks like a stochastic perturbation of the invariant density of the 
uncoupled system. The case of moderate coupling, for which a broadband 
noise in the power spectrum of the mean field is observed, yields a density 
with a strongly developed structure. It possesses sharp peaks which show 
an intermittent time evolution. The appearance of localized peaks in the 
density indicate a clustered state in the original coupled map lattice. Hence 
this type of motion can be viewed as an intermittent dynamics of clusters 
in the original system. Qualitatively this type of motion can be attributed 
to the stable period-three window in the logistic equation. Indeed for 
slightly different coupling strength a stable period-three state can be found 
in numerical simulations of the mean-field equation. 

5. CONCLUSION 

The simplicity of the global coupling has allowed for a mean-field- 
like description of the coupled map lattice. It contains the limit of infinite 
system size in a quite simple way, namely by a "smoothing" process of the 
reduced density. In a certain sense this description circumvents the problem 
of supertransients. If the transient time increases tremendously with the 
system size, e.g., exponentially, then the relevant dynamics of the spatially 
extended system may be the transient one and not the (mathematical) 
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stationary state. This behavior is of course difficult to analyze analytically 
for the original system (1). One merit of the mean-field formulation con- 
sists in the fact that in the limit of infinite system size, which means among 
continuous densities, these transients correspond to stationary states which 
can be discussed more easily. 

For  the example of tent maps a fairly complete survey over the 
stationary states has been given. It is worth to mention that these solutions 
can be found in numerical solutions of the mean-field equation as well as 
direct simulations of the coupled map lattice. They are attained for all 
initial conditions so that these states are apparently not only locally, but 
also globally stable. Hence the stationary state is a unique fixed point for 
2 1 > ( 1 - e ) a > x / ~ .  The finite-size effects induce fluctuations around this 
fLxed point so that global quantities like the mean field "obey the law of 
large numbers." At other parameter values one solution is selected from the 
continuum of periodic states, depending on the chosen initial condition. 
Because of its periodicity the mean square deviation of global quantities 
saturates at a finite value and apparently "violates the law of large 
numbers." The value of saturation depends on the initial condition/xS) 
At different parameter values that are not covered by the present approach, 
especially at negative coupling, additional bifurcations may occur/22) These 
values have been skipped in the present discussion because the map lattice 
may have diverging trajectories. 

Beyond the phenomena encountered in the hyperbolic tent map the 
nonhyperbolic logistic equation shows additional features. First of all the 
degeneracy of the spectrum of the transfer operator causes that even an 
infinitesimal coupling changes the dynamics drastically. This is obvious 
from the bifurcation analysis of fixed points. In contrast to the hyperbolic 
situations, the numerical simulations indicate that the locally stable solu- 
tions are not attained for a typical initial condition. Hence their domain of 
attraction seems to be small. In view of the complicated structure of the 
bifurcation diagram with probably infinitely many coexisting stable states 
this observation is not very astonishing. The lack of a unique stable fixed 
point also explains that the phenomenon of the "violation of the law of 
large numbers" is typically observed in nonhyperbolic examples at small 
coupling strength. 

Finally it should be mentioned that it is difficult to decide which 
features survive if the condition of infinite coupling range is relaxed. 
It is, however~ remarkable that hyperbolic coupled maps show often a 
rather simple evolution, whereas nonhyperbolic maps show a complicated 
dynamics with many coexisting stable or metastable states and intermittent 
behavior. The investigation of globally coupled systems may shed addi- 
tional light on these phenomena. But further investigations are required. 
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APPENDIX A 

Proof of  Eq. (32). The abbreviation 

g(z; 1/c) := 1 --area Izl (A1) 
r 

is introduced to take explicitly the c dependence into account. Obviously 
the relations 

7"?(z) = g(z; 1/c), 7"*(z) = g(z; c) (A2) 

hold. The ergodic components p(• are the continuous invariant 
measures of the map g(g(z; l/c); c). Hence the functions 

~kr +)(z) := f ,~(z - g(z'; l/c)) p~ + ~(z'; c) dz' (A3) 

are continuous invariant densities of the map g(g(z; c); l/c) which coin- 
cides with the former one if c is replaced by 1/c. This map has two ergodic 
components, which are contained in the two intervals [ - ( ( l / c ) ,  (( l /c)]  
respectively [((l/c),  1]. The original densities pC• contained in the 
intervals [ - ( ( c ) ,  ((c)], respectively, [((c), I]. One easily calculates that 
the images of these intervals obey 

g ( [ - ( ( c ) ,  ((c)]; 1/c)= [((I/c), 1] 
(A4) 

g([((c), 1]; 1/c) _ [ - ( ( I / c ) ,  (( l /c)]  

Hence the densities (A3) are continuous functions on the intervals (A4) 
and coincide for that reason with the ergodic components p(~:~(z; 1/c). 

Relation Between ([z[) ~-~ and (Izl) r247 The case c = l  will be 
considered throughout this paragraph and the argument c = 1 will be 
suppressed in the notation. On the two different ergodic components the 
map (28), which is simply the second iterate of the tent map, reads 

gr := 1 - ared(1 - - a r e a  Izl), Izl < (  (AS) 

g(+)(z) := 1 --ared 11 --aroaZ 1, ( <  z-..< 1 (A6) 

The two maps are conjugate to each other via g~ +)oh = h o gC-), where 
h(z) = (1 -z)/area. On one hand, the conjugacy implies 

( + )  z f z P ' - ' I ~ ) d z - - f h - ' ( z ) # + ' I z ) d z = l - a r e a f Z p  ()dz (g7) 
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On the other hand, the invariance of the density p(- )  yields 

f f 2 ( - - )  z p ( - ) ( z ) d z =  g ( - ) ( z ) p ( - ) ( z ) d z = l - - a r e d + a r e d ( l z l )  (A8) 

If one combines both equations one obtains 

(Izl >(+)= 1 --area(Izl>(-) (A9) 

Discussion of  Eq. (42). It will be shown that Eq. (42) determines a 
unique nonnegative value for every admissible ~ value. Because p(-)(z; 1) 
is contained in the interval [ - ( ( 1 ) ,  ((1)]  the inequality ( Iz[ ) ( - ) (1)~< 
((1) = 1/(area + 1) holds. But then 0 ~< ?/~< I is valid. The denominator of 
Eq. (42) obeys, for 0ce [0, 1], 

are a - -  1 + ca( 1 -- area) ~< area - 1 + ca[ 1 - area? / + O~q(are  d - -  1 ) ] (AIO) 

Hence it is positive for e < 1/2 (this bound on the coupling strength can be 
relaxed if a better estimate of the quantity ?/would be derived). But then 
the right-hand side of Eq. (42) is a monotonic function, so that for every 
0~ [0, 1] a unique value ofc  is found. This value is positive because 

c>~l 
ca(area - 1 )?/ 

a r e  d - -  1 + ca[ 1 - area? / + ? / ( a r e  a - -  I )] 

(are a -- 1)(1 --ca) 

a r e  d - -  1 + ca[ 1 - -  a r e a ?  / + ? / ( a r e  a - -  1 )] 
~-0 (Al l )  

holds for e < 1/2. From the estimate 

a r e d  ca(are a - 1)(1 -- 2=)?/ [ ea (A12) 
- 1 7 -  - -  1 ) 1  

one additionally obtains that for sufficiently small coupling strength e any 
value 0ce [0, 1] corresponds to a unique value c e  [I/are a, area]. 

APPENDIX B 

Let me briefly describe the basic idea for the numerical simulation of 
Eq. (5). The straightforward approach consists in an equidistant partition 
of the interval and the approximation of the density by a piecewise con- 
stant function in every iteration step. But an equidistant partition seems to 
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be not very suitable, especially if the density develops square-root-like 
singularities. A finer partition in those regions is desirable, whereas in flat 
regions a coarser partition is sufficient. For that reason the densities are 
approximated by piecewise constant functions so that every interval con- 
tains the same weight. To be definite, suppose that at time n a partition 
I(-~ - r,,(~ ,~,,~a 1 ~< k ~< N, in N intervals is given so that the density has k - -  k ~ k - -  I ~ ~ k  A~ 

the form 

N 1 

p . ( z ) =  ~ NAa~3Xr (B1) 
k = l  

,,("~ - ,,~"~ denote the lengths of the intervals and XJ stands where A a ~  "~ := ~k ~k-1 
for the characteristic function of the interval J. The partition at time n + 1 
is determined in such a way that the density p,+~ yields the same weight 
1 / N  for every interval. This prescription results in 

_(n+ l) 

- =  r , , ( z  ))  r ) &'  & N ~-+," 6 ( z -  ' ' 

= c~(z - T . ( z ' ) )  dz '  d z  - -  
I =  l %~" ~"2 , N ,da~ "~ 

(B2) 

The partition at time n + l ,  f.~t,,+ t "k  l~}, can be determined easily from 
Eq. (B2) in an iterative way because the remaining integrals are nothing 
else but the lengths of the intervals I~") c~ T~- it r (,, + i i ~ 7 At time n + 1 the 

~ k  / '  

density is again approximated by a piecewise constant function on the new 
partition [cf. Eq.(B1)] ,  which corresponds formally to the canonical 
orthogonal projection. 

Numerical estimates show that the error of the algorithm is O ( 1 / N )  

even if the density develops singularities. For the numerical simulations a 
partition of size N =  2000 has turned out to be sufficient so that the 
computations can be performed on a PC. 
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NOTE ADDED IN PROOF 

Ref. 20 has a changed title, as indicated. It reads: Globally coupled 
maps: Phase transitions and synchronization. In addition the reference is 
now in press. 
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